Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38593404

RESUMO

The cell plasma membrane is a two-dimensional, fluid mosaic material composed of lipids and proteins that create a semipermeable barrier defining the cell from its environment. Compared with soluble proteins, the methodologies for the structural and functional characterization of membrane proteins are challenging. An emerging tool for studies of membrane proteins in mammalian systems is a "plasma membrane on a chip," also known as a supported lipid bilayer. Here, we create the "plant-membrane-on-a-chip,″ a supported bilayer made from the plant plasma membranes of Arabidopsis thaliana, Nicotiana benthamiana, or Zea mays. Membrane vesicles from protoplasts containing transgenic membrane proteins and their native lipids were incorporated into supported membranes in a defined orientation. Membrane vesicles fuse and orient systematically, where the cytoplasmic side of the membrane proteins faces the chip surface and constituents maintain mobility within the membrane plane. We use plant-membrane-on-a-chip to perform fluorescent imaging to examine protein-protein interactions and determine the protein subunit stoichiometry of FLOTILLINs. We report here that like the mammalian FLOTILLINs, FLOTILLINs expressed in Arabidopsis form a tetrameric complex in the plasma membrane. This plant-membrane-on-a-chip approach opens avenues to studies of membrane properties of plants, transport phenomena, biophysical processes, and protein-protein and protein-lipid interactions in a convenient, cell-free platform.

2.
Adv Sci (Weinh) ; : e2310159, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514904

RESUMO

Vacuolar malic acid accumulation largely determines fruit acidity, a key trait for the taste and flavor of apple and other fleshy fruits. Aluminum-activated malate transporter 9 (ALMT9/Ma1) underlies a major genetic locus, Ma, for fruit acidity in apple, but how the protein transports malate across the tonoplast is unclear. Here, it is shown that overexpression of the coding sequence of Ma1 (Ma1α) drastically decreases fruit acidity in "Royal Gala" apple, leading to uncovering alternative splicing underpins Ma1's function. Alternative splicing generates two isoforms: Ma1ß is 68 amino acids shorter with much lower expression than the full-length protein Ma1α. Ma1ß does not transport malate itself but interacts with the functional Ma1α to form heterodimers, creating synergy with Ma1α for malate transport in a threshold manner (When Ma1ß/Ma1α ≥ 1/8). Overexpression of Ma1α triggers feedback inhibition on the native Ma1 expression via transcription factor MYB73, decreasing the Ma1ß level well below the threshold that leads to significant reductions in Ma1 function and malic acid accumulation in fruit. Overexpression of Ma1α and Ma1ß or genomic Ma1 increases both isoforms proportionally and enhances fruit malic acid accumulation. These findings reveal an essential role of alternative splicing in ALMT9-mediated malate transport underlying apple fruit acidity.

3.
bioRxiv ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38405924

RESUMO

Microbes encounter a myriad of stresses during their life cycle. Dysregulation of metal ion homeostasis is increasingly recognized as a key factor in host-microbe interactions. Bacterial metal ion homeostasis is tightly regulated by dedicated metalloregulators that control uptake, sequestration, trafficking, and efflux. Here, we demonstrate that deletion of the Bacillus subtilis yqgC-sodA (YS) complex operon, but not deletion of the individual genes, causes hypersensitivity to manganese (Mn). YqgC is an integral membrane protein of unknown function and SodA is a Mn-dependent superoxide dismutase (MnSOD). The YS strain has reduced expression of two Mn efflux proteins, MneP and MneS, consistent with the observed Mn sensitivity. The YS strain accumulated high levels of Mn, had increased reactive radical species (RRS), and had broad metabolic alterations that can be partially explained by the inhibition of Mg-dependent enzymes. Although the YS operon deletion strain and an efflux-deficient mneP mneS double mutant both accumulate Mn and have similar metabolic perturbations they also display phenotypic differences. Several mutations that suppressed Mn intoxication of the mneP mneS efflux mutant did not benefit the YS mutant. Further, Mn intoxication in the YS mutant, but not the mneP mneS strain, was alleviated by expression of Mg-dependent, chorismate-utilizing enzymes of the menaquinone, siderophore, and tryptophan (MST) family. Therefore, despite their phenotypic similarities, the Mn sensitivity in the mneP mneS and the yqgC-sodA deletion mutants results from distinct enzymatic vulnerabilities.

5.
Plant Physiol ; 193(2): 1142-1160, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37394917

RESUMO

Plant architecture is 1 of the most important factors that determines crop yield potential and productivity. In apple (Malus domestica), genetic improvement of tree architecture has been challenging due to a long juvenile phase and growth as complex trees composed of a distinct scion and a rootstock. To better understand the genetic control of apple tree architecture, the dominant weeping growth phenotype was investigated. We report the identification of MdLAZY1A (MD13G1122400) as the genetic determinant underpinning the Weeping (W) locus that largely controls weeping growth in Malus. MdLAZY1A is 1 of the 4 paralogs in apple that are most closely related to AtLAZY1 involved in gravitropism in Arabidopsis (Arabidopsis thaliana). The weeping allele (MdLAZY1A-W) contains a single nucleotide mutation c.584T>C that leads to a leucine to proline (L195P) substitution within a predicted transmembrane domain that colocalizes with Region III, 1 of the 5 conserved regions in LAZY1-like proteins. Subcellular localization revealed that MdLAZY1A localizes to the plasma membrane and nucleus in plant cells. Overexpressing the weeping allele in apple cultivar Royal Gala (RG) with standard growth habit impaired its gravitropic response and altered the growth to weeping-like. Suppressing the standard allele (MdLAZY1A-S) by RNA interference (RNAi) in RG similarly changed the branch growth direction to downward. Overall, the L195P mutation in MdLAZY1A is genetically causal for weeping growth, underscoring not only the crucial roles of residue L195 and Region III in MdLAZY1A-mediated gravitropic response but also a potential DNA base editing target for tree architecture improvement in Malus and other crops.


Assuntos
Malus , Malus/genética , Gravitropismo/genética , Substituição de Aminoácidos , Fenótipo , Mutação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
6.
Plant Cell ; 35(6): 2157-2185, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-36814393

RESUMO

Copper (Cu) and iron (Fe) are essential micronutrients that are toxic when accumulating in excess in cells. Thus, their uptake by roots is tightly regulated. While plants sense and respond to local Cu availability, the systemic regulation of Cu uptake has not been documented in contrast to local and systemic control of Fe uptake. Fe abundance in the phloem has been suggested to act systemically, regulating the expression of Fe uptake genes in roots. Consistently, shoot-to-root Fe signaling is disrupted in Arabidopsis thaliana mutants lacking the phloem companion cell-localized Fe transporter, OLIGOPEPTIDE TRANSPORTER 3 (AtOPT3). We report that AtOPT3 also transports Cu in heterologous systems and contributes to its delivery from sources to sinks in planta. The opt3 mutant contained less Cu in the phloem, was sensitive to Cu deficiency and mounted a transcriptional Cu deficiency response in roots and young leaves. Feeding the opt3 mutant and Cu- or Fe-deficient wild-type seedlings with Cu or Fe via the phloem in leaves downregulated the expression of both Cu- and Fe-deficiency marker genes in roots. These data suggest the existence of shoot-to-root Cu signaling, highlight the complexity of Cu/Fe interactions, and the role of AtOPT3 in fine-tuning root transcriptional responses to the plant Cu and Fe needs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Cobre , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Floema/genética , Floema/metabolismo , Homeostase , Ferro/metabolismo , Plantas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo
7.
Plant Direct ; 6(12): e469, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36514785

RESUMO

Five genes of large phenotypic effect known to confer abiotic stress tolerance in rice were selected to characterize allelic variation in commercial Colombian tropical japonica upland rice cultivars adapted to drought-prone acid soil environments (cv. Llanura11 and Porvenir12). Allelic variants of the genes ART1, DRO1, SUB1A, PSTOL1, and SPDT were characterized by PCR and/or Sanger sequencing in the two upland cultivars and compared with the Nipponbare and other reference genomes. Two genes were identified as possible targets for gene editing: SUB1A (Submergence 1A), to improve tolerance to flooding, and SPDT (SULTR3;4) (SULTR-like Phosphorus Distribution Transporter), to improve phosphorus utilization efficiency and grain quality. Based on technical and regulatory considerations, SPDT was targeted for editing. The two upland cultivars were shown to carry the SPDT wild-type (nondesirable) allele based on sequencing, RNA expression, and phenotypic evaluations under hydroponic and greenhouse conditions. A gene deletion was designed using the CRISPR/Cas9 system, and specialized reagents were developed for SPDT editing, including vectors targeting the gene and a protoplast transfection transient assay. The desired edits were confirmed in protoplasts and serve as the basis for ongoing plant transformation experiments aiming to improve the P-use efficiency of upland rice grown in acidic soils.

9.
Int J Mol Sci ; 22(4)2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33672907

RESUMO

HKT channels are a plant protein family involved in sodium (Na+) and potassium (K+) uptake and Na+-K+ homeostasis. Some HKTs underlie salt tolerance responses in plants, while others provide a mechanism to cope with short-term K+ shortage by allowing increased Na+ uptake under K+ starvation conditions. HKT channels present a functionally versatile family divided into two classes, mainly based on a sequence polymorphism found in the sequences underlying the selectivity filter of the first pore loop. Physiologically, most class I members function as sodium uniporters, and class II members as Na+/K+ symporters. Nevertheless, even within these two classes, there is a high functional diversity that, to date, cannot be explained at the molecular level. The high complexity is also reflected at the regulatory level. HKT expression is modulated at the level of transcription, translation, and functionality of the protein. Here, we summarize and discuss the structure and conservation of the HKT channel family from algae to angiosperms. We also outline the latest findings on gene expression and the regulation of HKT channels.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Proteínas de Plantas/metabolismo , Potássio/metabolismo , Sódio/metabolismo , Simportadores/metabolismo , Proteínas de Transporte de Cátions/classificação , Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica de Plantas , Transporte de Íons , Magnoliopsida/genética , Magnoliopsida/metabolismo , Microalgas/genética , Microalgas/metabolismo , Filogenia , Proteínas de Plantas/genética , Simportadores/classificação , Simportadores/genética
10.
Plant Physiol ; 186(1): 655-676, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33576792

RESUMO

Addressing the looming global food security crisis requires the development of high-yielding crops. In agricultural soils, deficiency in the micronutrient copper significantly decreases grain yield in wheat (Triticum aestivum), a globally important crop. In cereals, grain yield is determined by inflorescence architecture, flower fertility, grain size, and weight. Whether copper is involved in these processes, and how it is delivered to the reproductive organs is not well understood. We show that copper deficiency alters not only the grain set but also flower development in both wheat and its recognized model, Brachypodium distachyon. We then show that the Brachypodium yellow stripe-like 3 (YSL3) transporter localizes to the phloem, transports copper in frog (Xenopus laevis) oocytes, and facilitates copper delivery to reproductive organs and grains. Failure to deliver copper, but not iron, zinc, or manganese to these structures in the ysl3 CRISPR-Cas9 mutant results in delayed flowering, altered inflorescence architecture, reduced floret fertility, grain size, weight, and protein accumulation. These defects are rescued by copper supplementation and are complemented by YSL3 cDNA. This knowledge will help to devise sustainable approaches for improving grain yield in regions where soil quality is a major obstacle for crop production. Copper distribution by a phloem-localized transporter is essential for the transition to flowering, inflorescence architecture, floret fertility, size, weight, and protein accumulation in seeds.


Assuntos
Brachypodium/fisiologia , Cobre/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Brachypodium/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/metabolismo , Reprodução
11.
Plant J ; 106(1): 245-257, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33458870

RESUMO

The maize (Zea mays) genome encodes three indole-3-glycerolphosphate synthase enzymes (IGPS1, 2, and 3) catalyzing the conversion of 1-(2-carboxyphenylamino)-l-deoxyribulose-5-phosphate to indole-3-glycerolphosphate. Three further maize enzymes (BX1, benzoxazinoneless 1; TSA, tryptophan synthase alpha subunit; and IGL, indole glycerolphosphate lyase) convert indole-3-glycerolphosphate to indole, which is released as a volatile defense signaling compound and also serves as a precursor for the biosynthesis of tryptophan and defense-related benzoxazinoids. Phylogenetic analyses showed that IGPS2 is similar to enzymes found in both monocots and dicots, whereas maize IGPS1 and IGPS3 are in monocot-specific clades. Fusions of yellow fluorescent protein with maize IGPS enzymes and indole-3-glycerolphosphate lyases were all localized in chloroplasts. In bimolecular fluorescence complementation assays, IGPS1 interacted strongly with BX1 and IGL, IGPS2 interacted primarily with TSA, and IGPS3 interacted equally with all three indole-3-glycerolphosphate lyases. Whereas IGPS1 and IGPS3 expression was induced by insect feeding, IGPS2 expression was not. Transposon insertions in IGPS1 and IGPS3 reduced the abundance of both benzoxazinoids and free indole. Spodoptera exigua (beet armyworm) larvae show improved growth on igps1 mutant maize plants. Together, these results suggest that IGPS1 and IGPS3 function mainly in the biosynthesis of defensive metabolites, whereas IGPS2 may be involved in the biosynthesis of tryptophan. This metabolic channeling is similar to, though less exclusive than, that proposed for the three maize indole-3-glycerolphosphate lyases.


Assuntos
Benzoxazinas/metabolismo , Indol-3-Glicerolfosfato Sintase/metabolismo , Indóis/metabolismo , Triptofano/metabolismo , Zea mays/metabolismo , Indol-3-Glicerolfosfato Sintase/genética
12.
ACS Appl Bio Mater ; 4(4): 3101-3112, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35014398

RESUMO

Supported lipid bilayers (SLBs) hold tremendous promise as cellular-mimetic structures that can be readily interfaced with analytical and screening tools. The incorporation of transmembrane proteins, a key component in biological membranes, is a significant challenge that has limited the capacity of SLBs to be used for a variety of biotechnological applications. Here, we report an approach using a cell-free expression system for the cotranslational insertion of membrane proteins into hybrid-supported lipid bilayers (HSLBs) containing phospholipids and diblock copolymers. We use cell-free expression techniques and a model transmembrane protein, the large conductance mechanosensitive channel (MscL), to demonstrate two routes to integrate a channel protein into a HSLB. We show that HSLBs can be assembled with integrated membrane proteins by either cotranslational integration of protein into hybrid vesicles, followed by fusion of these proteoliposomes to form a HSLB, or preformation of a HSLB followed by the cell-free synthesis of the protein directly into the HSLB. Both approaches lead to the assembly of HSLBs with oriented proteins. Notably, using single-particle tracking, we find that the presence of diblock copolymers facilitates membrane protein mobility in the HSLBs, a critical feature that has been difficult to achieve in pure lipid SLBs. The approach presented here to integrate membrane proteins directly into preformed HSLBs using cell-free cotranslational insertion is an important step toward enabling many biotechnology applications, including biosensing, drug screening, and material platforms requiring cell membrane-like interfaces that bring together the abiotic and biotic worlds and rely on transmembrane proteins as transduction elements.


Assuntos
Materiais Biocompatíveis/química , Sistema Livre de Células/química , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Teste de Materiais , Tamanho da Partícula
13.
G3 (Bethesda) ; 10(7): 2435-2443, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32439738

RESUMO

Quantitative traits are important targets of both natural and artificial selection. The genetic architecture of these traits and its change during the adaptive process is thus of fundamental interest. The fate of the additive effects of variants underlying a trait receives particular attention because they constitute the genetic variation component that is transferred from parents to offspring and thus governs the response to selection. While estimation of this component of phenotypic variation is challenging, the increasing availability of dense molecular markers puts it within reach. Inbred plant species offer an additional advantage because phenotypes of genetically identical individuals can be measured in replicate. This makes it possible to estimate marker effects separately from the contribution of the genetic background not captured by genotyped loci. We focused on root growth in domesticated rice, Oryza sativa, under normal and aluminum (Al) stress conditions, a trait under recent selection because it correlates with survival under drought. A dense single nucleotide polymorphism (SNP) map is available for all accessions studied. Taking advantage of this map and a set of Bayesian models, we assessed additive marker effects. While total genetic variation accounted for a large proportion of phenotypic variance, marker effects contributed little information, particularly in the Al-tolerant tropical japonica population of rice. We were unable to identify any loci associated with root growth in this population. Models estimating the aggregate effects of all measured genotypes likewise produced low estimates of marker heritability and were unable to predict total genetic values accurately. Our results support the long-standing conjecture that additive genetic variation is depleted in traits under selection. We further provide evidence that this depletion is due to the prevalence of low-frequency alleles that underlie the trait.


Assuntos
Oryza , Teorema de Bayes , Variação Genética , Humanos , Oryza/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
14.
Plant Cell ; 32(2): 449-469, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31826966

RESUMO

Rapid pollen tube growth requires uptake of Suc or its hydrolytic products, hexoses, from the apoplast of surrounding tissues in the style. Due to species-specific sugar requirements, reliance of pollen germination and tube growth on cell wall invertase and Suc or hexose transporters varies between species, but it is not known if plants have a sugar transporter that mediates the uptake of both hexose and Suc for pollen tube growth. Here, we show that a sugar transporter protein in apple (Malus domestica), MdSTP13a, takes up both hexose and Suc when expressed in yeast, and is essential for pollen tube growth on Glc and Suc but not on maltose. MdSTP13a-mediated direct uptake of Suc is primarily responsible for apple pollen tube growth on Suc medium. Sorbitol, a major photosynthate and transport carbohydrate in apple, modulates pollen tube growth via the MYB transcription factor MdMYB39L, which binds to the promoter of MdSTP13a to activate its expression. Antisense repression of MdSTP13a blocks sorbitol-modulated pollen tube growth. These findings demonstrate that MdSTP13a takes up both hexose and Suc for sorbitol-modulated pollen tube growth in apple, revealing a situation where acquisition of sugars for pollen tube growth is regulated by a sugar alcohol.


Assuntos
Transporte Biológico/fisiologia , Hexoses/metabolismo , Malus/metabolismo , Proteínas de Plantas/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Sorbitol/metabolismo , Sacarose/metabolismo , Transporte Biológico/genética , Regulação da Expressão Gênica de Plantas , Maltose/metabolismo , Malus/genética , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Tubo Polínico/genética , Polinização/genética , Polinização/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Simportadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , beta-Frutofuranosidase/metabolismo
15.
Plant Physiol ; 182(2): 992-1006, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31772076

RESUMO

Malate accumulation in the vacuole largely determines apple (Malus domestica) fruit acidity, and low fruit acidity is strongly associated with truncation of Ma1, an ortholog of ALUMINUM-ACTIVATED MALATE TRANSPORTER9 (ALMT9) in Arabidopsis (Arabidopsis thaliana). A mutation at base 1,455 in the open reading frame of Ma1 leads to a premature stop codon that truncates the protein by 84 amino acids at its C-terminal end. Here, we report that both the full-length protein, Ma1, and its naturally occurring truncated protein, ma1, localize to the tonoplast; when expressed in Xenopus laevis oocytes and Nicotiana benthamiana cells, Ma1 mediates a malate-dependent inward-rectifying current, whereas the ma1-mediated transmembrane current is much weaker, indicating that ma1 has significantly lower malate transport activity than Ma1. RNA interference suppression of Ma1 expression in 'McIntosh' apple leaves, 'Empire' apple fruit, and 'Orin' apple calli results in a significant decrease in malate level. Genotyping and phenotyping of 186 apple accessions from a diverse genetic background of 17 Malus species combined with the functional analyses described above indicate that Ma1 plays a key role in determining fruit acidity and that the truncation of Ma1 to ma1 is genetically responsible for low fruit acidity in apple. Furthermore, we identified a C-terminal domain conserved in all tonoplast-localized ALMTs essential for Ma1 function; protein truncations into this conserved domain significantly lower Ma1 transport activity. We conclude that the truncation of Ma1 to ma1 reduces its malate transport function by removing a conserved C-terminal domain, leading to low fruit acidity in apple.


Assuntos
Frutas/genética , Frutas/metabolismo , Malatos/metabolismo , Malus/genética , Proteínas de Plantas/metabolismo , Vacúolos/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/genética , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Malus/metabolismo , Mutação , Oócitos/metabolismo , Oócitos/fisiologia , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Domínios Proteicos , Interferência de RNA , /fisiologia , Vacúolos/genética , Vacúolos/fisiologia , Xenopus laevis
16.
New Phytol ; 224(2): 675-688, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31364171

RESUMO

Signal coordination in response to changes in water availability remains unclear, as does the role of embolism events in signaling drought stress. Sunflowers were exposed to two drought treatments of varying intensity while simultaneously monitoring changes in stomatal conductance, acoustic emissions (AE), turgor pressure, surface-level electrical potential, organ-level water potential and leaf abscisic acid (ABA) concentration. Leaf, stem and root xylem vulnerability to embolism were measured with the single vessel injection technique. In both drought treatments, it was found that AE events and turgor changes preceded the onset of stomatal closure, whereas electrical surface potentials shifted concurrently with stomatal closure. Leaf-level ABA concentration did not change until after stomata were closed. Roots and petioles were equally vulnerable to drought stress based on the single vessel injection technique. However, anatomical analysis of the xylem indicated that the increased AE events were not a result of xylem embolism formation. Additionally, roots and stems never reached a xylem pressure threshold that would initiate runaway embolism throughout the entire experiment. It is concluded that stomatal closure was not embolism-driven, but, rather, that onset of stomatal closure was most closely correlated with the hydraulic signal from changes in leaf turgor.


Assuntos
Helianthus/fisiologia , Estômatos de Plantas/fisiologia , Transpiração Vegetal/fisiologia , Transdução de Sinais , Água/metabolismo , Ácido Abscísico , Secas , Raízes de Plantas/fisiologia , Caules de Planta/fisiologia , Estresse Fisiológico
17.
BMC Plant Biol ; 19(1): 316, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31307394

RESUMO

BACKGROUND: HKT channels mediate sodium uniport or sodium and potassium symport in plants. Monocotyledons express a higher number of HKT proteins than dicotyledons, and it is only within this clade of HKT channels that cation symport mechanisms are found. The prevailing ion composition in the extracellular medium affects the transport abilities of various HKT channels by changing their selectivity or ion transport rates. How this mutual effect is achieved at the molecular level is still unknown. Here, we built a homology model of the monocotyledonous OsHKT2;2, which shows sodium and potassium symport activity. We performed molecular dynamics simulations in the presence of sodium and potassium ions to investigate the mutual effect of cation species. RESULTS: By analyzing ion-protein interactions, we identified a cation coordination site on the extracellular protein surface, which is formed by residues P71, D75, D501 and K504. Proline and the two aspartate residues coordinate cations, while K504 forms salt bridges with D75 and D501 and may be involved in the forwarding of cations towards the pore entrance. Functional validation via electrophysiological experiments confirmed the biological relevance of the predicted ion coordination site and identified K504 as a central key residue. Mutation of the cation coordinating residues affected the functionality of HKT only slightly. Additional in silico mutants and simulations of K504 supported experimental results. CONCLUSION: We identified an extracellular cation coordination site, which is involved in ion coordination and influences the conduction of OsHKT2;2. This finding proposes a new viewpoint in the discussion of how the mutual effect of variable ion species may be achieved in HKT channels.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Transporte de Íons , Proteínas de Plantas/metabolismo , Potássio/metabolismo , Sódio/metabolismo , Animais , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Cátions/metabolismo , Clonagem Molecular , Eletrofisiologia , Mutação , Proteínas de Plantas/química , Proteínas de Plantas/genética , Conformação Proteica , Relação Estrutura-Atividade , Xenopus laevis
18.
Proc Natl Acad Sci U S A ; 116(28): 14309-14318, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31227607

RESUMO

Sensing and responding to environmental water deficiency and osmotic stresses are essential for the growth, development, and survival of plants. Recently, an osmolality-sensing ion channel called OSCA1 was discovered that functions in sensing hyperosmolality in Arabidopsis Here, we report the cryo-electron microscopy (cryo-EM) structure and function of an OSCA1 homolog from rice (Oryza sativa; OsOSCA1.2), leading to a model of how it could mediate hyperosmolality sensing and transport pathway gating. The structure reveals a dimer; the molecular architecture of each subunit consists of 11 transmembrane (TM) helices and a cytosolic soluble domain that has homology to RNA recognition proteins. The TM domain is structurally related to the TMEM16 family of calcium-dependent ion channels and lipid scramblases. The cytosolic soluble domain possesses a distinct structural feature in the form of extended intracellular helical arms that are parallel to the plasma membrane. These helical arms are well positioned to potentially sense lateral tension on the inner leaflet of the lipid bilayer caused by changes in turgor pressure. Computational dynamic analysis suggests how this domain couples to the TM portion of the molecule to open a transport pathway. Hydrogen/deuterium exchange mass spectrometry (HDXMS) experimentally confirms the conformational dynamics of these coupled domains. These studies provide a framework to understand the structural basis of proposed hyperosmolality sensing in a staple crop plant, extend our knowledge of the anoctamin superfamily important for plants and fungi, and provide a structural mechanism for potentially translating membrane stress to transport regulation.


Assuntos
Anoctaminas/ultraestrutura , Proteínas de Arabidopsis/ultraestrutura , Canais de Cálcio/ultraestrutura , Oryza/ultraestrutura , Conformação Proteica , Sequência de Aminoácidos/genética , Anoctaminas/química , Anoctaminas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Microscopia Crioeletrônica , Citoplasma/genética , Espectrometria de Massas , Potenciais da Membrana/genética , Oryza/genética , Oryza/crescimento & desenvolvimento , Pressão Osmótica/fisiologia , Água/química
19.
Front Plant Sci ; 9: 1420, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319678

RESUMO

Aluminum (Al) toxicity on acidic soils significantly damages plant roots and inhibits root growth. Hence, crops intoxicated by Al become more sensitive to drought stress and mineral nutrient deficiencies, particularly phosphorus (P) deficiency, which is highly unavailable on tropical soils. Advances in our understanding of the physiological and genetic mechanisms that govern plant Al resistance have led to the identification of Al resistance genes, both in model systems and in crop species. It has long been known that Al resistance has a beneficial effect on crop adaptation to acidic soils. This positive effect happens because the root systems of Al resistant plants show better development in the presence of soil ionic Al3+ and are, consequently, more efficient in absorbing sub-soil water and mineral nutrients. This effect of Al resistance on crop production, by itself, warrants intensified efforts to develop and implement, on a breeding scale, modern selection strategies to profit from the knowledge of the molecular determinants of plant Al resistance. Recent studies now suggest that Al resistance can exert pleiotropic effects on P acquisition, potentially expanding the role of Al resistance on crop adaptation to acidic soils. This appears to occur via both organic acid (OA)- and non-OA transporters governing a joint, iron-dependent interplay between Al resistance and enhanced P uptake, via changes in root system architecture. Current research suggests this interplay to be part of a P stress response, suggesting that this mechanism could have evolved in crop species to improve adaptation to acidic soils. Should this pleiotropism prove functional in crop species grown on acidic soils, molecular breeding based on Al resistance genes may have a much broader impact on crop performance than previously anticipated. To explore this possibility, here we review the components of this putative effect of Al resistance genes on P stress responses and P nutrition to provide the foundation necessary to discuss the recent evidence suggesting pleiotropy as a genetic linkage between Al resistance and P efficiency. We conclude by exploring what may be needed to enhance the utilization of Al resistance genes to improve crop production on acidic soils.

20.
Plant Cell Environ ; 41(4): 809-822, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29346835

RESUMO

Aluminum (Al)-induced organic acid secretion from the root apex is an important Al resistance mechanism. However, it remains unclear how plants fine-tune root organic acid secretion which can contribute significantly to the loss of fixed carbon from the plant. Here, we demonstrate that Al-induced citrate secretion from the rice bean root apex is biphasic, consisting of an early phase with low secretion and a later phase of large citrate secretion. We isolated and characterized VuMATE2 as a possible second citrate transporter in rice bean functioning in tandem with VuMATE1, which we previously identified. The time-dependent kinetics of VuMATE2 expression correlates well with the kinetics of early phase root citrate secretion. Ectopic expression of VuMATE2 in Arabidopsis resulted in increased root citrate secretion and Al resistance. Electrophysiological analysis of Xenopus oocytes expressing VuMATE2 indicated VuMATE2 mediates anion efflux. However, the expression regulation of VuMATE2 differs from VuMATE1. While a protein translation inhibitor suppressed Al-induced VuMATE1 expression, it releases VuMATE2 expression. Yeast one-hybrid assays demonstrated that a previously identified transcription factor, VuSTOP1, interacts with the VuMATE2 promoter at a GGGAGG cis-acting motif. Thus, we demonstrate that plants adapt to Al toxicity by fine-tuning root citrate secretion with two separate root citrate transport systems.


Assuntos
Alumínio/toxicidade , Proteínas de Transporte/metabolismo , Ácido Cítrico/metabolismo , Meristema/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proteínas de Plantas/metabolismo , Vigna/metabolismo , Animais , Animais Geneticamente Modificados , Arabidopsis , Proteínas de Transporte/genética , Perfilação da Expressão Gênica , Meristema/efeitos dos fármacos , Oócitos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Técnicas do Sistema de Duplo-Híbrido , Vigna/efeitos dos fármacos , Vigna/genética , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...